本文共 3570 字,大约阅读时间需要 11 分钟。
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便 派上用场了。 我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重 点。
算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的 结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在 当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止
期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。
实现方法:
建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为 0)。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列 为空。
判断有无负环:
如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)
首先建立起始点a到其余各点的
最短路径表格
首先源点a入队,当队列非空时:
1、队首元素(a)出队,对以a为起始点的所有边的终点依次进行松弛操作(此处有b,c,d三个点),此时路径表格状态为:
在松弛时三个点的最短路径估值变小了,而这些点队列中都没有出现,这些点
需要入队,此时,队列中新入队了三个结点b,c,d队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e点),此时路径表格状态为:
在最短路径表中,e的最短路径估值也变小了,e在队列中不存在,因此e也要
入队,此时队列中的元素为c,d,e队首元素c点出队,对以c为起始点的所有边的终点依次进行松弛操作(此处有e,f两个点),此时路径表格状态为:
在最短路径表中,e,f的最短路径估值变小了,e在队列中存在,f不存在。因此
e不用入队了,f要入队,此时队列中的元素为d,e,f队首元素d点出队,对以d为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:
在最短路径表中,g的最短路径估值没有变小(松弛不成功),没有新结点入队,队列中元素为f,g
队首元素f点出队,对以f为起始点的所有边的终点依次进行松弛操作(此处有d,e,g三个点),此时路径表格状态为:
在最短路径表中,e,g的最短路径估值又变小,队列中无e点,e入队,队列中存在g这个点,g不用入队,此时队列中元素为g,e
队首元素g点出队,对以g为起始点的所有边的终点依次进行松弛操作(此处只有b点),此时路径表格状态为:
在最短路径表中,b的最短路径估值又变小,队列中无b点,b入队,此时队列中元素为e,b
队首元素e点出队,对以e为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:
在最短路径表中,g的最短路径估值没变化(松弛不成功),此时队列中元素为b
队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e这个点),此时路径表格状态为:
在最短路径表中,e的最短路径估值没变化(松弛不成功),此时队列为空了
最终a到g的最短路径为14
java代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | package spfa负权路径; import java.awt.List; import java.util.ArrayList; import java.util.Scanner; public class SPFA { /** * @param args */ public long[] result; //用于得到第s个顶点到其它顶点之间的最短距离 //数组实现邻接表存储 class edge{ public int a;//边的起点 public int b;//边的终点 public int value;//边的值 public edge(int a,int b,int value){ this.a=a; this.b=b; this.value=value; } } public static void main(String[] args) { // TODO Auto-generated method stub SPFA spafa=new SPFA(); Scanner scan=new Scanner(System.in); int n=scan.nextInt(); int s=scan.nextInt(); int p=scan.nextInt(); edge[] A=new edge[p]; for(int i=0;i<p;i++){ int a=scan.nextInt(); int b=scan.nextInt(); int value=scan.nextInt(); A[i]=spafa.new edge(a,b,value); } if(spafa.getShortestPaths(n,s,A)){ for(int i=0;i<spafa.result.length;i++){ System.out.println(spafa.result[i]+" "); } }else{ System.out.println("存在负环"); } } /* * 参数n:给定图的顶点个数 * 参数s:求取第s个顶点到其它所有顶点之间的最短距离 * 参数edge:给定图的具体边 * 函数功能:如果给定图不含负权回路,则可以得到最终结果,如果含有负权回路,则不能得到最终结果 */ private boolean getShortestPaths(int n, int s, edge[] A) { // TODO Auto-generated method stub ArrayList<Integer> list = new ArrayList<Integer>(); result=new long[n]; boolean used[]=new boolean[n]; int num[]=new int[n]; for(int i=0;i<n;i++){ result[i]=Integer.MAX_VALUE; used[i]=false; } result[s]=0;//第s个顶点到自身距离为0 used[s]=true;//表示第s个顶点进入数组队 num[s]=1;//表示第s个顶点已被遍历一次 list.add(s); //第s个顶点入队 while(list.size()!=0){ int a=list.get(0);//获取数组队中第一个元素 list.remove(0);//删除数组队中第一个元素 for(int i=0;i<A.length;i++){ //当list数组队的第一个元素等于边A[i]的起点时 if(a==A[i].a&&result[A[i].b]>(result[A[i].a]+A[i].value)){ result[A[i].b]=result[A[i].a]+A[i].value; if(!used[A[i].b]){ list.add(A[i].b); num[A[i].b]++; if(num[A[i].b]>n){ return false; } used[A[i].b]=true;//表示边A[i]的终点b已进入数组队 } } } used[a]=false; //顶点a出数组对 } return true; } } |
本文转自 sshpp 51CTO博客,原文链接:http://blog.51cto.com/12902932/1949427,如需转载请自行联系原作者